

JEE MAINS PATTERN

		Mathematics :	Quadratic Equat	ion							
		Practice	e Paper – 01								
1.	If the sum of the roots of the equation $ax^2 + bx + c = 0$ is equal to sum of the squares of their reciprocals, then bc^2 , ca^2 , ab^2 are in										
	(A) A.P	(B) G.P	(C) H.P	(D) A.G.P							
2.	If $k > 0$ and the product of the roots of the equation $x^2 - 3kx + 2e^{2\log k} - 1 = 0$ is 7 then the sum of the roots is										
	(A) 1	(B) 4	(C) 6	(D) 8							
3.	The number of rea	al solution of the eq	uation $\left(\frac{9}{10}\right)^{x} = -3 + x$	$-x^2$ is							
	(A) 2	(B) 0	(C) 1	(D) 3							
4.	If the roots of $(x - x)$ of the following is		(x-c)(x-c)(x-c)	(a) = 0 are equal then which							
	(A) a + b + c = 0	(B) a = b = c	(C) $a + bw + cw^2$	$(D) a + bw^2 + cw = 0$							
5.	The equation $\log_2(3-x) + \log_2(1-x) = 3$ has										
	(A) One root	(B) Two root	(C) Infinite roots	(D) No root							
6.	If $ax^2 + bx + c =$	0 and $bx^2 + cx + a$	= 0 have a common a	$\neq 0$ then $\frac{a^3 + b^3 + c^3}{abc}$							
	(A) 1	(B) 2	(C) 3	(D) 9							
7.	If a, b are the roots of $x^2 + px + 1 = 0$, and c, d are the roots of $x^2 + qx + 1 = 0$, then the value of $E = (a-c)(b-c)(a+d)(b+d)$ is										
	$(A) p^2 - q^2$	$(B) q^2 - p^2$	$(C) q^2 + p^2$	(D) None of these							
8.	If $x^2 + 2ax + 10 - 3a > 0$ for each $x \in R$, then										
	(A) $a < -5$	(B) $-5 < a < 2$	(C) $a > 5$	(D) $2 < a < 5$							

www.ezyEXAMSolutions.com

9.	If	a,	b,	c	are	real	and	$a \neq b$,	then	the	roots	of	the	equation
	2(a	a – b	$(x^2 - x^2)$	-11(a	a + b -	+c)x –	3(a-b)	0 = 0 are						

(A) real and equal

(B) real and unequal

(C) purely imaginary

(D) none of these

10. The minimum value of
$$|x| + \left|x + \frac{1}{2}\right| + \left|x - 3\right| + \left|x - \frac{5}{2}\right|$$
 is

- (A) 2
- (B)4
- (C) 6
- (D) 4

The set of values of x for which the inequality $[x]^2 - 5[x] + 6 \le 0$ (where [.] denote the 11. greatest integral function) hold good is

- (A) 2 < [x] < 3
- (B) 2 < [x] < 4 (C) 2 < x < 3 (D) 2 < x < 4

If $(\log_5 x)^2 + \log_5 x < 2$ then x belongs to the interval 12.

- (A) $\left(\frac{1}{25}, 25\right)$ (B) $\left(\frac{1}{5}, \frac{1}{\sqrt{5}}\right)$ (C) $(1, \infty)$ (D) (5, 25)

If the harmonic mean between the roots of $(5+\sqrt{2})x^2-bx+(8+2\sqrt{5})=0$ is 4, then 13. the value of b is

- (A) 2
- (B) 3
- (C) $4 \sqrt{5}$ (D) $4 + \sqrt{5}$

If α , β are the roots of $x^2 + ax - b = 0$ and γ , δ are the roots of $x^2 + ax + b = 0$ then 14. $(\alpha - \gamma)(\alpha - \delta)(\beta - \delta)(\beta - \gamma) =$

- (A) $4b^{2}$
- (B) b^2
- (C) $2b^2$
- (D) $3b^2$

If the ratio of the roots of $ax^2 + 2bx + c = 0$ is same as the ratio of the roots of 15. $px^2 + 2qx + r = 0$ then

- (A) $\frac{b^2}{ac} = \frac{p^2}{ar}$ (B) $\frac{b}{ac} = \frac{q}{pr}$ (C) $\frac{b^2}{ac} = \frac{q^2}{pr}$ (D) $\frac{b}{ac} = \frac{q^2}{pr}$

The roots of the equation 16.

$$(b-c)x^2 + 2(c-a)x + (a-b) = 0$$
 are always

(A) Real and distinct

(B) real and equal

(C) real

(D) imaginary

If $a \in Z$ and the equation 17.

(x-a)(x-10)+1=0 has integral roots, then values of 'a' are

- (A) 10, 8
- (B) 12, 10
- (C) 12, 8
- (D) 10, 12

www.ezyEXAMSolution.com

hnnn	<i>Wh@ZJYLZ}</i> \/4UU/0	OUUIGUOLLI-GOLLL	WW	w.ezy <mark>EXAMS</mark> olutions.com			
18.	The value of	λ in order that the eq	uations $2x^2 + 5\lambda x + 2 = 0$ and $4x^2 + 8\lambda x + 3 = 0$				
	have a commo	on root is given by					
	(A) 1	(B) -1	(C) ± 1	(D) 3			
19.	If both roots of the integral pa		$a + a^2 - 1 = 0$ lie in t	he interval (–3,4) then sum of			
	(A) 0	(B) 2	(C) 4	(D) -1			
20.	Number of rat	ional roots of the equati	ion $ x^2 - 2x - 3 + 4$	x = 0 is			
	(A) 1	(B) 2	(C) 3	(D) 4			
21.	The set of real	values of x satisfying	$ x-1 \le 3$ and $ x-1 $	≥1			
	(A) $[2,4]$	(B) $(-\infty,2)\cup(4,$	∞) (C) $[-2,0] \cup [2,4]$	[0,2]			
22.	_	-		divided by $x - 1$, $x - 2$, $x - 3$ wided by $(x - 1)(x - 2)(x - 3)$			
	(A) f(x)	(B) $x^2 + x + 1$	(C) $x^2 + 1$	(D) $x + 2$			
23.	The range of v	values of x which satisfy	y 5x + 2 < 3x + 8 an	$ad \frac{x+2}{x-1} < 4 are$			
	(A)(2,3)	(B) $(-\infty,1)\cup(2,1)$	(C) $(2,\infty)$	(D) R			
24.	For $x \in \mathbb{R}$, the	e least value of $\frac{x^2 - 6x}{x^2 + 2x}$	$\frac{x+5}{x+1}$ is				
	(A) -1	(B) $-\frac{1}{2}$	(C) $-\frac{1}{4}$	(D) $-\frac{1}{3}$			
25.	Suppose $a^2 = 5a$	$-8 \text{ and } b^2 = 5b - 8$, the	en equation whose ro	oots are a/b and b/a is			
	(A) $6x^2 - 5x + 6$	=0	(B) $8x^2 - 9x + 8 =$	= 0			
	(C) $9x^2 - 8x + 9$	= 0	(D) $8x^2 + 9x + 8$	= 0			
26.	If α , β are roots	of $ax^2 + bx + c = 0$, the	en roots of $a^3x^2 + abc$	$cx + c^3 = 0$ are			
	(A) $\alpha\beta$, $\alpha+\beta$	(B) $\alpha^2 \beta$, $\alpha \beta^2$	(C) $\alpha\beta$, $\alpha^2\beta^2$	(D) α^3 , β^3			
27.	If $P(x) = ax^2 + b$	$cx + c$ and $Q(x) = -ax^2$	$+ dx + c$, where ac \neq	0, then $P(x)Q(x) = 0$ has			
	(A) no real root		(B) exactly two r	eal roots			
	(C) at least two	distinct real roots	(D) none of these	•			

- 28. If the product of the roots of the equation $x^2 5kx + 2e^{4lnk} 1 = 0$ is 31, then sum of the root is
 - (A) -10
- (B)5
- (C) 8
- (D) 10
- 29. Let α , β be the roots of the equation $x^2 px + r = 0$ and $(\alpha/2)$, 2β be the roots of the equation $x^2 - qx + r = 0$. Then the value of r is
 - (A) $\frac{2}{9}(p-q)(2q-p)$

- (B) $\frac{2}{9}(q-p)(2p-q)$
- (C) $\frac{2}{9}(q-2p)(2q-p)(D) \frac{2}{9}(2p-q)(2q-p)$
- The sum of all the real roots of the equation $|x-2|^2 + |x-2| 2 = 0$ is 30.
 - (A) 7

- (B) 4
- (C) 1

(D) none of these

